bounds for the regularity of edge ideal of vertex decomposable and shellable graphs

Authors

s. moradi

d. kiani

abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Constructing vertex decomposable graphs

‎Recently‎, ‎some techniques such as adding whiskers and attaching graphs to vertices of a given graph‎, ‎have been proposed for constructing a new vertex decomposable graph‎. ‎In this paper‎, ‎we present a new method for constructing vertex decomposable graphs‎. ‎Then we use this construction to generalize the result due to Cook and Nagel‎.

full text

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

full text

Vertex-decomposable Graphs, Codismantlability, Cohen-Macaulayness, and Castelnuovo-Mumford Regularity

We call a vertex x of a graph G = (V,E) a codominated vertex if NG[y] ⊆ NG[x] for some vertex y ∈ V \{x}, and a graph G is called codismantlable if either it is an edgeless graph or it contains a codominated vertex x such that G − x is codismantlable. We show that (C4, C5)-free vertex-decomposable graphs are codismantlable, and prove that if G is a (C4, C5, C7)-free well-covered graph, then ver...

full text

constructing vertex decomposable graphs

‎recently‎, ‎some techniques such as adding whiskers and attaching graphs to vertices of a given graph‎, ‎have been proposed for constructing a new vertex decomposable graph‎. ‎in this paper‎, ‎we present a new method for constructing vertex decomposable graphs‎. ‎then we use this construction to generalize the result due to cook and nagel‎.

full text

A note on vertex-edge Wiener indices of graphs

The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

Publisher: iranian mathematical society (ims)

ISSN 1017-060X

volume 36

issue No. 2 2011

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023